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NUMERICAL SIMULATION OF PLASTIC-FLOW

LOCALIZATION FOR SIMPLE SHEAR

UDC 01-201; 01-315V. M. El’kin, V. N. Mikhailov, T. Yu. Mikhailova

An algorithm was developed to numerically simulate plastic-flow localization for simple shear of a
thermally plastic and viscoplastic material. The algorithm is based on solving the partial differential
equations describing continuum flow. The closing equation is the constitutive relation known in
the literature as the power law linking the plastic-strain rate to the flow stress, temperature, and
accumulated plastic strain. Calculated relations for the time evolution of the shear-band width and
the temperature and plastic strains localized in it agree satisfactorily with experimental relations.
Good agreement with experimental results is also obtained for the sample temperature distribution at
the developed stage of the localization process.
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Introduction. At present, numerous experimental studies have shown that in high-velocity deformation
of solids (metals, rocks, or polymers), initially homogeneous plastic deformation becomes inhomogeneous. The
inhomogeneity of the deformation process is manifested, in particular, in the formation of so-called adiabatic shear
bands observed in metallographic studies of samples subjected to dynamic loading. The mechanism of formation
of these bands proposed by Zener and Hollomon [1], which has already become classical, reduces to the following.
Plastic shear occurs initially in several weak zones with heat release due to the work of plastic deformation, which,
under dynamic loading conditions, has no time to encompass the entire volume of the sample. Local reduction
in the yield strength in the heated zone results in plastic-flow activation in this zone and, hence, in even higher
heat release and further reduction in the yield strength. The process thus develops disastrously up to failure of the
material in the shear band and, in some cases, up to melting of the failure surface. Subsequent fast cooling leads
to a change in the material microstructure in the shear band, as was observed in metallographic studies of samples
after loading.

Formulation of the Problem. The problem of simple shear deformation of an infinite layer of an isotropic
viscoplastic material of thickness 2d can be formulated as follows (see, for example, [2, 3]). The lower and upper
boundaries of the layer move oppositely at a velocity V0 in a certain chosen direction. Because of the symmetry
of the problem, the midplane of the layer has a velocity equal to zero, which makes it possible to formulate the
problem for only half of the layer with the lower boundary fixed and the upper boundary moving at a constant
velocity V0 in the y direction (Fig. 1). In this one-dimensional formulation, the coordinates and temperature of a
mass point are written as

y = y0 + U(x, t), x = x0, z = z0, T = T (x, t),

where x, y, and z are the current coordinates, x0, y0, and z0 are the initial coordinates of the point, U is the
displacement in the y direction, T is the temperature, and t is time. The Oy and Oz axes lie in the plane of the
lower boundary of the layer, and the Ox axis is normal to this plane.
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Fig. 1. Diagram of simple shear.

The equations of motion and heat conduction in this (Cartesian) coordinate system are written as

ρ0V̇ =
∂σ

∂x
, ρ0cṪ = λ

∂2T

∂x2
+ γσε̇p, (1)

where ρ0, c, and λ are the density, heat capacity, and thermal conductivity of the layer material, respectively, σ is
the flow stress, V = U̇ is the velocity of the mass point, εp is the plastic strain, γ is the fraction of the work of plastic
deformation converted to heat. Here and below, the dot above the variable denotes differentiation with respect to
time.

The initial and boundary conditions for the velocity and displacement are determined by the loading model
given above:

U(x, 0) = 0, V (x, 0) = V0x/d,

U(0, t) = 0, V (0, t) = 0, U(d, t) = V0t, V (d, t) = V0.
(2)

The boundary conditions on the temperature define the adiabaticity of process:

∂T

∂x
(0, t) =

∂T

∂x
(d, t) = 0; (3)

the initial conditions corresponds to a uniform temperature distribution:

T (x, 0) = T0. (4)

It is assumed that the total strain is the sum of the elastic strain εe and the plastic strain εp:

ε ≡ ∂U

∂x
= εe + εp. (5)

Hence,

σ̇ = G
(∂V

∂x
− ε̇p

)
, (6)

where G is the shear modulus.
The constitutive equation for the viscoplastic layer material is written as the simple power-law model

σ = σ0

( ε̇p

ε̇∗

)m(εp

ε∗

)n( T

T∗

)−ν

. (7)

Here m, n, and ν are factors that describe the sensitivity of the material to the loading rate, deformation strength-
ening, and thermal softening, respectively, σ0 is the flow stress for ε̇p = ε̇∗ and εp = ε∗, and T = T∗.

Numerical Simulation. Equations (1)–(7) are solved numerically on the segment [0, d] using a uniform
spatial grid:

xi = i∆x, i = 0, . . . , N, xN = d.

The space derivatives on the grid are calculated using spline functions. The use of splines for function
interpolation, numerical differentiation, and integration is described in numerous papers (see, for example, [7]).
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For a function y = f(x) with values specified as grid nodes yi = f(xi), the interpolation cubical spline is
written as

S(x) = yi + C1,i(x− xi) + C2,i(x− xi)2 + C3,i(x− xi)3,

where C1,i, C2,i, and C3,i are coefficients to be determined.
The step in time ∆t is determined from the Courant condition of solution stability:

ε̇∆t 6 ∆xmin [1/Cs,∆x/(2r)]. (8)

Here r = λ/(ρ0c) and Cs = (G/ρ0)1/2 is the velocity of the elastic shear wave. Condition (8) is a combination of
the stability conditions for the equations of motion and heat conduction.

Let us note some features that arise in the simulation of experiments with Kolsky bars using system (1)–(7).
In these experiments, the strain rate is ε̇0 ≈ 102–104 sec−1 and the sample size is 2d = 2.5 mm. In this case,
satisfaction of the stability condition for the equation of motion leads to an extremely small step in time. For the
parameters G and ρ0 typical for steel and for ∆x = 0.01d (100 intervals), the step in time is ε̇∆t 6 10−11 and
the computation time for one version becomes unrealistically large. However, in this case, the ratio of the sound
velocity to the velocity of motion of the medium is also large:

Cs/V = G/(ρ0V ) ≈ 1019;

i.e., at each time, a homogeneous state of stress (∂σ/∂x = 0) occurs in the material. Thus, from this point of
view, this type of tests is quasistatic and the calculations in this case can be performed eliminating the equation of
motion (1) from system (1)–(7). Integrating Eq. (7) over x and t, we obtain the following expression for the stress:

σ(t) = G
( 1∫

0

ε dx−
1∫

0

εp dx
)

= G
(
t−

1∫
0

εp dx
)
.

The function εp(x) is integrated using the corresponding spline.
In this case, the stability of the solution of the system is described by the Courant condition for the heat-

conduction equation

ε̇∆t 6 ∆x2/(2r) ≈ 10−3.

With this step in time, the computation time for one version becomes quite reasonable.
System (1)–(7) is implemented in the SHEAR BAND numerical code in Pascal using the Delphi integrated

development environment.
The simulation of shear band formation and development for simple shear was considered in [2, 3], where

the effect of material parameters on the nature of localization was in qualitative agreement with experimental
observations. In [3] a simple comparative criterion of localization is formulated on the basis of simulation results.
Numerical simulation has been widely used to study the behavior of shear bands. The results, as a rule, have been
qualitatively compared with experimental data. However, it is of great interest to directly compare computation
and experimental data. In the present study, the results of numerical simulations of shear band development are
directly compared with the experimental data of [4, 5]. In the cited papers, shear band formation was studied
in detail for dynamic torsion of tubular samples of low-doped steels (HY-100, 1080 CRS, and 1020 HRS) using a
Kolsky torsional setup. In these experiment, the strain rate was (1–5) · 103 sec−1; therefore, the calculations were
conducted in a quasistatic approximation.

For numerical simulation of shear band formation, it is necessary to specify the initial inhomogeneity that
initiates the development of plastic flow instability. In the experiments of [4, 5], this inhomogeneity was not specified
but, as is noted in [4], on the axis of the tubular samples there was a 5–10% difference in thickness apparently due the
sample production process. In the calculations, this inhomogeneity of the sample was modeled by local weakening
of the strength parameter σ0 in the form

σ0(x) = σ00[1− δ cos (πx/(2h)],

where δ is the perturbation amplitude and h is the width of the perturbation zone. Preliminary calculations showed
that the parameters δ and h have a significant effect on the development of the localization process, and the fact
that the difference in sample thickness was not measured in the experiments considerably hindered the comparison
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Fig. 2. Experimental and calculated loading diagrams for HY-100 steel at standard temperature
and a strain rate of 1600 sec−1: the dashed curves are the boundaries of the spread zone of the
experimental data of [4]; the solid curve is the calculation.

TABLE 1
Steel grade ν n m σ00, MPa δ

HY-100 0.33 0.08 (0.107) 0.0117 463 (510) 0.1
1018 CRS 0.38 0.015 0.019 486 (436) 0.022
1020 HRS 0.51 0.12 0.0133 296 (261) 0.015

of the simulation results and experimental data. In all calculations of the present study, the perturbation zone had
a width h = d and the value of the perturbation amplitude was chosen so as to obtain a fit between the calculated
and experimental strains εσ max that provide a maximum on the σ–ε (stress–strain) diagram. We note that the
spread in εσ max from experiment to experiment is rather great (approximately 50%), which is apparently due to
oscillations of the uncontrolled difference in the sample thickness.

Calculation Results and Comparison of with Experiment. The mathematical modeling of the ex-
periments of [4, 5] is considerably simplified by the fact that the parameters of the constitutive equations (7) for
the tested steels were chosen from the results of preliminary experiments. We note, however, that the plastic strain
rate, plastic strain, and temperature in the shear band are far beyond the boundaries of the regions in which these
parameters were determined. Therefore, a certain correction of these parameters is quite permissible. Such a cor-
rection was made for the deformation strengthening parameter n and the strength parameter σ00. The goal of this
correction was to achieve that the calculated σ–ε diagram was in the range of experimental values.

Figure 2 gives the calculation results and their comparison with experimental data (for HY-100 steel) with
allowance for the spread. Although the calculated curve is in the zone of spread of the experimental results, the
curves differ in nature. In particular, the region of strengthening of the experimental curves has a larger duration.
As a result, the initial stage of localization of plastic deformation recorded in the experiment is in the immediate
proximity to the stress maximum, whereas in the calculation notable inhomogeneity occurs much earlier. In addition,
the stress drop (after attainment of the maximum) on the experimental curves is faster than that on the calculated
curve (the segment of sharp flow stress drop corresponds to failure of the sample, and in this case, a comparison
with the calculated curve is meaningless). In this connection, it should be recognized that the constitutive relation
in the power-law form proposed in [4, 5] does not provide the best description of the experimental loading diagram
of HY-100 steel, even ignoring the yield spike. Nevertheless, this constitutive equation was used in the calculations.

Table 1 gives the values used in the calculations of the parameters of the constitutive relation (7), which
primarily coincide with the experimental values of [4, 5]. For the parameters corrected during the solution, their
experimental values are given in parentheses. In addition, for all steels the following parameters were used: γ = 1,
d = 1.25 mm, λ = 54 W/(m ·K), ρ0 = 7900 kg/m3, c = 500 J/(kg ·K), and G = 81 GPa.
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Fig. 3. Shear bandwidth versus average normalized strain for HY-100 steel: the points refer to the
experiment of [4] and the curve refers to the calculation.

Fig. 4. Average strain in the shear band versus bandwidth: experimental values of [4] for 1018 CRS
steel (1) and HY-100 steel (2); calculations for 1018 CRS steel (3) and HY-100 steel (4).

In [4], the widths of the shear and strain bands in this zone were measured for HY-100 steel. The width of the
shear band was determined as the length of the segment on the sample axis that corresponded to the constant slope
of the grid line applied using lithography on the sample surface before loading. However, the permissible degree of
deviation from this slope is not given. Therefore, in the calculations, as the shear bandwidth we used the width
of the region in which the plastic strain exceeded 70% of the maximum value (by analogy with the determination
of the pulse width in electrical engineering). Thus, the methods used to determine the shear bandwidth H in
the experiment and calculations, generally speaking, were different. Therefore, initially, we attempted to find a
correlation between them. However, unexpectedly, it turned out that the calculated and experimental data were
in satisfactory agreement (Fig. 3). In Fig. 3, the abscissa is the nominal strain averaged over the sample and
normalized by the strain at which the flow stress becomes maximum. The introduction of this variable is explained
as follows. According to the existing concepts of the localization onset, supported by experimental data [4, 5], the
point of reference of shear band formation is the strain at which the flow stress reaches the maximum. However,
the spread in the values of εσ max in the experiments is large enough, and, hence, it seems reasonable to use the
normalized strain.

Figure 4 shows a comparison of experimental and calculated dependences of the average strain in the shear
band versus bandwidth for HY-100 and 1018 CRS steels. It is evident that the calculated and experimental data
agree well for shear bandwidth from 30 to 600 µm. The very large experimental strains in the shear band ε > 600%
for HY-100 steel correspond to the third stage of development of the localization process, which is characterized
by considerable inhomogeneity of the deformation on the circumference of the sample. In addition, at this stage,
the shear band does not lie in one cross-sectional plane of the sample. Thus, the development of the shear band
becomes considerably non-one-dimensional and cannot be modeled using a one-dimensional program.

In [4], the temperature variation in time was measured by recording the infrared radiation from the sample
surface at twelve points along its axis. Unfortunately, the three-dimensional plots “time–transducer number–
transducer signal” presented there cannot be used for comparison with the calculated temperature variation in time
at different points on the sample axis. For comparison, data on the temperature distribution on the axis were used.
At the moment of failure, the average strain of the sample εmax, like the strain εσ max, has a considerable spread and
there is an obvious correlation between them. Because of this correlation, the spread in the normalized quantity
εmax/εσ max is much smaller and is in the range 1.8–2.0. The temperature distribution was calculated for these
extreme values of the maximum strain. Since the temperature measured in the experiment is the average over the
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Fig. 5. Temperature distribution on the sample axis in the neighbor-
hood of the shear band: solid curves refer to calculations; points 1–6
correspond to experimental data from [5].
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Fig. 6. Temperature (curves 1 and 1 ′) and stress (curves 2 and 2′) versus time for 1020 HRS steel
(ε̇0 = 2400 sec−1): the dashed curves refer to the experiment of [5] and the solid curves refer to
calculations; the vertical dashed line shows the moment of failure of the sample.

Fig. 7. Temperature (curves 1 and 1 ′) and stress (curves 2 and 2 ′) versus time for 1018 CRS steel
(ε̇0 = 1100 sec−1): the dashed curves refer to the experiment of [5] and the solid curves refer to
calculations; the vertical dashed line shows the moment of failure of the sample.

size of the spot (35 µm) whose infrared radiation is recorded, the calculated results were averaged in an appropriate
way for comparison with experiment. Figure 5 gives a comparison of the calculated and experimental data. From
the plots given above, it is evident that the calculation data for the two extreme values of the maximum strain are
in good agreement with the experimental results.

Figures 6 and 7 give experimental and calculated loading diagrams in time for 1020 HRS and 1018 CRS
steels [5] and the time dependence of the temperature in the center of the shear band. It is evident that for 1020 HRS
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steel, good agreement between the experimental and calculated data is obtained, whereas for 1018 CRS steel, the
agreement is primarily qualitative.

Thus, although the employed constitutive equation is simple and (as noted above) is not quite adequate
to experimental data, the numerical simulation provides a satisfactory fit to the experimental results on dynamic
torsion of samples of HY-100, 1018 CRS, and 1020 HRS steels.
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